A Characterisation of Nilpotent Blocks

نویسنده

  • RADHA KESSAR
چکیده

Let B be a p-block of a finite group, and set m = ∑ χ(1), the sum taken over all height zero characters of B. Motivated by a result of M. Isaacs characterising p-nilpotent finite groups in terms of character degrees, we show that B is nilpotent if and only if the exact power of p dividing m is equal to the p-part of |G : P ||P : R|, where P is a defect group of B and where R is the focal subgroup of P with respect to a fusion system F of B on P . The proof involves the hyperfocal subalgebra D of a source algebra of B. We conjecture that all ordinary irreducible characters of D have degree prime to p if and only if the F -hyperfocal subgroup of P is abelian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Conjecture of G. Malle and G. Navarro on Nilpotent Blocks

In a recent article, G. Malle and G. Navarro conjectured that the p-blocks of a finite group all of whose height 0 characters have the same degree are exactly the nilpotent blocks defined by M. Broué and L. Puig. In this paper, we check that this conjecture holds for spin-blocks of the covering group 2.An of the alternating group An, thereby solving a case excluded from the study of quasi-simpl...

متن کامل

Cherednik Algebras and Two - Sided Cells

We conjecture that the “nilpotent points” of Calogero-Moser space for reflection groups are parametrised naturally by the two-sided cells of the group with unequal parameters. The nilpotent points correspond to blocks of restricted Cherednik algebras and we describe these blocks in the case G = μ` o Sn and show that in type B our description produces an existing conjectural description of two-s...

متن کامل

NILPOTENT GRAPHS OF MATRIX ALGEBRAS

Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...

متن کامل

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017